
The Performance Evaluation
Research Center (PERC)

David H. Bailey, LBNL

Participating Institutions:

Argonne Natl. Lab. Univ. of California, San Diego
Lawrence Berkeley Natl. Lab. Univ. of Illinois
Lawrence Livermore Natl. Lab. Univ. of Maryland
Oak Ridge Natl. Lab. Univ. of Tennessee, Knoxville

Website: http://perc.nersc.gov

The Performance Evaluation
Research Center (PERC)

An “Integrated Software Infrastructure Center” (ISIC)
sponsored under DoE’s SciDAC program.
Funding: approx. $2.4 million per year.
Mission:

Develop a science of performance.
Engineer tools for performance analysis and
optimization.

Focus:
Large, grand-challenge calculations, especially
SciDAC application projects.

Benefits to Computing Centers

Consider the economic value of improving the
performance of a single high-end scientific
application code by 20%.

Assume:
$10 million computer system lease cost per year.
$10 million per year in site costs, support staff, etc.
10-year lifetime of code.
Code uses 5% of system cycles each year.

Savings: $2,000,000.
Scientific benefit (additional computer runs and

research) is probably much higher.

Benefits to Vendors

Large labs (like NERSC) rely heavily on commercial
vendors for high-performance computer systems.
We are invited by vendors to provide guidance on the
detailed design of future systems.

BUT
At present we can provide only vague information –
little if any quantitative data or rigorous analysis.

The performance monitoring and modeling capability
being developed in PERC will significantly improve
our ability to influence future computer systems.

Performance Monitoring

Flexible instrumentation systems to capture:
Hardware phenomena
Instruction execution frequencies
Memory reference behavior
Execution overheads

An advanced data management infrastructure to:
Track performance experiments.
Collect data across time and space.

User-friendly tools to tie performance data to user’s
source code.

Performance Modeling

Application signature tools characterize applications
independent of the machine where they execute.
Machine signature tools characterize computer
systems, independent of the applications.
Convolution schemes combine application and
machine signatures to provide accurate performance
models.
Other performance modeling approaches:

Statistical models.
Phase models.
Performance bounds.

Performance Optimization

Compile-time optimization mechanisms analyze
source code to improve performance.
Self-tuning software automatically tunes code based
on real-time measurements of hardware
environment.
Performance assertions permit user-specified run-
time tests to possibly change the course of the
computation depending on results.
Performance portability programming techniques to
insure that code runs at near-optimal performance
across a variety of modern systems.

Measured Memory Access
Patterns

MAPS Alpha 21264

0
50

100
150
200
250
300
350
400
450

gr
in

d
L1

gr
in

d
L1

cy
cl

ic
al

 L
1/

L2

gr
in

d
L2

st
rid

e
1

us
e

ca
ch

e
lin

e

st
rid

e
2

us
e

ca
ch

e
lin

e

ra
nd

om
, u

se
 c

ac
he

lin
e

st
rid

e
8

ra
nd

om
, t

hr
ow

 a
w

ay
lin

e

of
f p

ro
ce

ss
or

M
 M

O
P

/s

SvPablo Graphical Interface

PAPI Perfometer Interface

Performance Signature Modeling
[A. Snavely, SDSC]

0.7952.4652.88128

3.5247.1548.8796

2.2343.9144.9164

6.6733.7236.138

7.5731.2729.074

0.1331.8231.782

% ErrorPredicted TimeReal Time# CPUs

Climate Code Performance
Improvement [P. Worley, ORNL]

Scalable Benchmarking
[LBNL/NERSC]

Approach: Define a benchmark that automatically
assesses performance over a broad range of relative
distances between successive memory accesses.
Feature: Independent of any particular cache
structure or architecture.
Result: A function graph of performance versus
locality.

Currently being developed by E. Strohmaier at LBNL.

Effective System Performance
(ESP) Test [LBNL /NERSC]

Analyzes system-level performance:
Efficiency of job scheduling system, applied to a mix
of both small and large jobs.
Network contention in a fully-utilized system.
Job start-up times.
Time required for reboots (for example when
restarting from regularly scheduled maintenance).

Objective: Run a defined workload of varying system
sizes in the best time possible, compared to the total
capacity of the system.
Measured scores range from 60% to 85%.

Sustained System Performance
(SSP) Test [LBNL/NERSC]

Developed at LBNL/NERSC for procurements.
Defines sustained performance as the average
performance of a suite of user application codes on
say 256 CPUs.
Defines sustained system performance by linear
scaling to the total number of processors.
Procurement SSP: Maximize the integral of SSP,
measured at monthly intervals, over the lifetime of the
contract.
Provides strong value to the center.
Provides flexibility to the vendor in meeting its
contractual requirements.

Looking to the Future:
The Massively Parallel Challenge

Systems featuring 10,000+ CPUs, present daunting
challenges for performance analysis and tools:
What performance phenomena should we measure?
How can we collect and manage performance data
spewed out by tens of thousands of CPUs?
How can we visualize performance phenomena on
10,000+ CPUs?
How can we identify bottlenecks in these systems?

Solution: Intelligent, highly automated performance
tools, applicable over a wide range of system sizes
and architectures, are needed.

Looking to the Future:
Benchmarking and Modeling

How can a center meaningfully procure a system with
10,000+ CPUs, a system 10 to 100 times more
powerful than any system currently in existence?
How can we define a benchmark that provides
meaningful results for systems spanning four orders
of magnitude in size?

Reliable performance modeling techniques, usable
with modest effort and expertise, offers the best hope
for an solution here.

Looking to the Future:
System Simulation

“Computational scientists have become expert in
simulating every phenomena except for the systems
they run on.” -- Speaker at Salishan 2003.
System simulations heretofore have been used
sparingly in system studies, because of the great cost
and difficulty in parallelization of such simulations.

Such simulations are now feasible, due to:
Availability of large-scale parallel systems.
Developments in the parallel discrete event simulation
field.

Looking to the Future:
User-Level Automatic Tuning

Self-tuning software technology has already been
demonstrated in a few large-scale libraries:

FFTW (MIT).
LAPACK-ATLAS (Univ. of Tennessee).

Near term: Adapting these techniques to a wider
group of widely used scientific libraries.
Mid term: Automatically incorporate simple
performance models into user application codes.
Future goal: Automatically incorporate simple run-
time tests, using compiler technology, into user
application codes.

Working with PERC

For further information:

http://perc.nersc.gov

